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Quantization Table Redesign for the JPEG Compression Algorithm Targeting
Classification Neural Networks

Abstract
Image compression is an important technique in
deep learning applications as it effectively reduces
the required storage size, lowers data transfer over-
head and shortens classification time. JPEG is a
widely used lossy image compression method in-
volving a quantization table made of a 8×8 array,
which largely influences the quality as well as the
degree of the JPEG compression. The existing
research on generating quantization table using
human visual system approach, rate-distortion ap-
proach, and meta-Heuristics approach are not op-
timal for deep neural networks. In this work, we
primarily focus on exploring efficient approaches
to produce a neural network favorable JPEG quan-
tization table. We use hyper-parameter tuning
methods including random search, sorted random,
bounded random search, Bayesian optimization
and multi-armed bandit to redesign a quantiza-
tion table based on data retrieved from the ’Im-
ageNetV2’ dataset. The new quantization tables
we obtained can provide performance improve-
ment by 20% to 200% increase in compression
rate when the accuracy is fixed, or up to 2% at
the same compression rate. With cross validation
on different datasets and retrained neural network,
the improvement is decreased but not disappeared.

1 Introduction
Neural network used to be a major area of research for neu-
roscience nad computer science till 1969. In the next few
decades, this technique enjoyed a resurgence in natural lan-
guage processing, self-driving cars, speech recognition and
object detection (Collobert & Weston, 2008; Hirschberg &
Manning, 2015; Bojarski et al., 2016; Abdel-Hamid et al.,
2014; Szegedy et al., 2013). Recently, with the emergence
of mobile devices, internet of things and cloud storage ser-
vices, neural network are gaining unprecedented growth
and are one of the commonly used machine learning algo-
rithms for clustering and classification now. This brings
the issue of managing the storage or memory requirement
for a dataset to its practitioners. If a model can achieve
equivalent performance at higher compression ration, acqui-

sition, transmission and storage of large dataset can be less
prohibitive.

As one of the most commonly used image compression stan-
dards for neural network datasets including ImageNet (Deng
et al., 2009), PASCAL VOC (Everingham et al.) COCO (Lin
et al., 2014), and etc., JPEG (Joint Photographic Experts
Group) standard is susceptible to quality distortion (Dodge
& Karam, 2016). Fig. 1 shows an overview of the stan-
dard JPEG compression algorithm. Each digital component,
i.e. the YCbCr channels, are first partitioned into 8×8
non-overlapping blocks. Then the digital components are
transformed to frequency components with 2D discrete co-
sine transform (DCTII) transforms. At quantization, the
frequency components are quantized by a scaled quantiza-
tion table. The scale is determined by quality factor ranges
from 0 to 100 (LuaDist, 2015). For instance, a quality fac-
tor of 100 scales quantization table coefficients into 0 and
the frequency components are rounded into integer. Then
the quantized coefficients are ordered into the “Zig-Zag”
sequence and further compressed with entropy coding and
Huffman coding.

Among all steps, quantization is particularly interesting
and challenging since it is lossy and the given quantization
table decides what features are preserved, potentially play-
ing a critical role for neural network classification when
the dataset is compressed by JPEG. However, existing re-
searches on designing quantization table mostly prioritize
human perceived distortions as compression target (Liu
et al., 2018), which compressed images that may not be
distinguishable to computers (Wright et al., 2009). Other
work that addresses this issue such as DeepN-JPEG (Liu
et al., 2018) validates its quantization table using ImageNet,
a dataset already compressed by JPEG.

In this work, we discuss traditional JPEG quantization table
design targeting PSNR and human visual system unfit for
deep neural network in Section 2. Section 3 shows how we
rebuild the a high resolution with 1933×1592 pixels on av-
erage by retrieving images from Flickr with ID provided by
ImageNetV2. To find better quantization table, we start with
sorted random search, and based on the bound we obtain
with sorted random search, we further test different hyper-
parameter tuning methods, including sorted random search,
bound random search, Bayesian optimization, and MAB, to
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Figure 1. Overview of JPEG Compression Algorithm

design a neural network favorable JPEG quantization table
in Section 4. We compare the performance and training
efficiency of all different methods, cross-validates them on
other parts of ImageNetV2 and ImageNet in Section 5.

The contributions of this paper are:

• We apply sorted random search to all range of compres-
sion rates and show that standard quantization table
can be easily outperformed by this simple algorithm.

• With bounds set by sorted random search, we compare
the performance of different methods and analyze their
efficiency.

• We demonstrate the effectiveness of our methods by
cross-validating the pareto optimal quantization tables
with different testing datasets and through retraining.
• We build a high-resolution dataset based on Ima-

geNetV2 and compress it to mimic the process of
dataset compression.

Our experiments show that given same compression rate
the testing accuracy can be improved by 1% to 2% through
quantization table redesign. This corresponds to 20% to
200% of improvement on compression rate given the same
testing accuracy. The accuracy improvement can retain even
after cross validation on different datasets and retraining
neural network.

2 Related Work and Motivation

2.1 Quantization Table Optimization

Because JPEG is one of the most widely used image com-
pression techniques, JPEG quantization table optimiza-
tion has been an enduring issue. The existing approaches

can be classified into three categories: rate-distortion ap-
proach, human visual system approach, and meta-heuristic
approach (Naresh et al., 2015). Rate-distortion approaches
introduce distortion, measured by peak signal-to-noise ratio
(PSNR), and gradually increases compression rate (Wu &
Gersho, 1993; Fung & Parker, 1995; Ramchandran & Vet-
terli, 1994). Progressively, human visual system approach
became popular, which aiming at optimizing visual quality
for an image (Watson, 1993; Wang et al., 2001; Westen
et al., 1996; Jiang & Pattichis, 2011). Standard JPEG is
designed under the same goal (Wallace, 1992). However,
neither PSNR or human visual system models target this
issue from the perspective of deep neural network. Instead,
it is designed to cater human visual system which is not
sensitive to many small details as the computers do. What’s
more, existing popular meta-heuristic approaches for quan-
tization table optimization requires large population to start
with (Wu, 2004; Costa & Veiga, 2005; Cutello et al., 2005;
Balasubramanian & Manavalan, 2016; Ma & Zhang, 2013;
Tušar & Filipič, 2007; Kumar & Karpagam, 2016; Tuba &
Bacanin, 2014) However, compressing all images as input
data consumes a long time. In our experiments, generating
a population of 300 dataset with 2500 images takes a day
on a 20 threading Intel(R) Xeon(R) CPU E5-2620 v4 CPU.
We therefore aim at finding efficient methods in search for
the optimal space.

2.2 DeepN-JPEG

There are few work that highlight the optimization of quan-
tization table for neural network. DeepN-JPEG models the
difference between human visual system and deep neural
network. Using the difference, they design their quantiza-
tion table structure according to the frequency bands of DCT
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components. However, this quantization table structure may
be limiting its performance for neural networks. Instead, we
leverage on hyper-parameter tuning to guide us in finding a
better quantization table for neural network itself.

Also, the authors both determine parameters of their quan-
tization table and test it on ImageNet, a pre-compressed
JPEG-format dataset of low resolution. In this work, we re-
build a high-resolution dataset from ImageNetV2 and cross
validate all kinds of datasets to learn the generality of the
quantization tables we find.

3 Dataset
ImageNet is already downsized and lossy compressed com-
pressed. For instance, ImageNet 2013 classification dataset
has an average resolution of 482×415 pixels (Russakovsky
et al., 2015). Instead, we turn to ImageNetV2, a new test
dataset for ImageNet (Recht et al., 2019). In ImageNetV2,
the images are also downsized and compressed, but the au-
thors open-source their code to generate the dataset as well
as the IDs of which we can retrieve the source image with
Flickr API (Wikipedia contributors, 2019). The dataset we
rebuild has an average resolution of 1933×1592 pixels.

ImageNetV2 contains three test sets, breaking into Matched-
Frequency, TopImages and Threshold0.7 based on the sam-
pling strategies (Recht et al., 2019). Each test set has 1000
classes with 10 images per class. Specifically, we use the
MatchedFrequency test set of which was sampled to match
the MTurk selection frequency distribution of the original
ImageNet validation set for each class. At training, we use a
small portion of MatchedFrequency dataset to cross validate
our result and also speedup the training process.

4 Methods
We treat the whole problem as hyper-parameter tuning and
does not retrain the neural network but only feed in input
images compressed by different quantization table. Since
compressing the dataset for one validation is expensive, our
methods aim at finding optimal points as few trials as pos-
sible and each trial shall not take long decision time. We
used sorted random and bounded random search, Bayesian
optimization and MAB, to find quantization tables that out-
performs the standard one.

4.1 Sorted Random Search

A simple and yet effective method is random search. How-
ever, a complete random search results in search space of
25664 ≈ 1.34 · 10154. Random sampling would thus not
generate a good search result. Instead, when we observe a
typical output of DCT coefficients, the upper left ones are
large while the lower right ones are relatively small. Typ-
ical 8× 8 DCT coefficients can be found at the third step
in Fig. 1. We therefore perform a Zig-Zag reordering on a
sorted list of 64 integers. The integers are uniformly random

generated among [s,e] where s,e ∈ Z and 1≤ s < e≤ 255.
The intuition also comes from JPEG compression algorithm
where after quantization, it performs a Zig-Zag reordering
for further compression. We refer to this Zig-Zag reordering
method as sorted random search.

The method creates a pareto curve in terms of accuracy and
compression rate and we denote the set of points on that
curve as PA. Each point p ∈ PA has three fields, accuracy
acc, compression rate cr and quantization table terms t[i] i∈
[0,63]. This experiment provides a good starting point for
other algorithms.

4.2 Bounded Random Search

Previously, it is hard to capture good points by randomly
sampling from a tremendously large search space. With
sorted random search, we obtain a bound in the search space
where we can now extensively explore. Bounds for a large
range of compression rate is also large, making it difficult
for sampling, while we only care the most interesting point
of quality 50, where the scaling factor of quantization ta-
ble is 100%. The compression rate of the standard JPEG
quantization table is approximately 22 at quality 50. We
take points from the pareto set PA with compression rate
range around 22 to from a new set PAquality ⊆ PA, where
21≤ p.cr ≤ 23 ∀p ∈ PAquality. The boundary for each term
t[i], i = 0,1, . . .63 in quantization table is set to

∀p ∈ PAquality,

LowerBound[i] = min(p.t[i], p.t[63− i])−0.5σ(p.t[i]),

UpperBound[i] = max(p.t[i], p.t[63− i])+0.5σ(p.t[i]).

By randomly sampling within the bounds, we avoided the
constraint of ordering.

4.3 Bayesian Optimization

Bayesian optimization is widely used for hyper-parameter
searching in neural network and can efficiently find good
points in search space. To take this advantage of Bayesian
optimization, we need to address two problems.

First, Bayesian optimization is modeled towards a single
target objective function and our task involves two: com-
pression rate and accuracy. Given certain compression rate,
even when there is no corresponding point in the pareto set
PA, we can use a parabola f itness(CR) = aCR2 +bCR+ c
that fits the pareto curve to estimate best accuracy we can
achieve with sorted random search. Then we can set the
target value y = ACC− f it(CR), standing for the difference
between the accuracy gap between actual accuracy and best
accuracy found by sorted random search. The large search
space is another issue. With it being as large as 1.34 ·10154,
any sampling algorithms have negligible chance of sam-
pling good points. We therefore set the sampling bound
the same as bounded random search. Also, low frequency



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Quantization Table Redesign for the JPEG Compression Algorithm Targeting Classification Neural Networks

LF components

MF components

HF components

Figure 2. Frequency Band Partitions.

(LF) and middle frequency (MF) components of DCT 8x8
arrays have larger absolute value (Kaur et al., 2011), and
therefore more susceptible to changes of quantization value.
We define the area of interest as low frequency and middle
frequency bands as shown in Fig 2. We perform a local grid
search to randomly choose indexes in the area of interested
indexes and iteratively update the quantization table with
the highest acquisition value.

x_samples = generate_uniform(n_init)
ys = acquisition(x_samples)
max_acq = ys.max()
x_max = x_samples[ys.argmax()]
for i in range(n_greedy_updates):

indexes = random_choose(
n_choices, interest_indexes)

x_samples = grid_search(
indexes, bounds)

ys = acquisition(x_samples)
if (ys.max() > max_acq):

max_acq = ys.max()
x_max = x_samples[ys.argmax()]

4.4 Multi-Arm Bandit

Multi-Arm Bandit (MAB) is one of the most fundamental
techniques in Reinforcement Learning (RL). The main idea
of MAB is to learn a strategy to interact with the unknown
environment and maximize the expected reward from the
environment. Similar to Bayesian optimization, MAB main-
tains a set of probabilistic distribution estimate for each
bandit arm, and will update these distributions according to
history results. In each iteration, the RL agent calculates
the score of each arm (i.e. options available in the decision
making) based on the estimate, and returns the most promis-
ing arm (with the highest score), which will be validated in
the next run. The score function for arm a at iteration t is
defined as followed:

Ut(a) = x̄a +

√
−log(t)
2Nt(a)

∗ c (1)

The xa is the mean reward of arm a from the search history
and Nt(a) denotes how many times arm a has been selected
before iteration t. Factor c is the weight factor to balance
exploration and exploitation. It is set as 0.05 by default, and

we can modify its value to adjust the balance between explo-
ration and exploitation. The searching is more aggressive
(i.e. more efforts in exploration) with a larger weight factor.

There are different ways to formalize the quantization ta-
ble searching problem into MAB. For example, we can
partition the incredibly large search space into sub-spaces,
and consider each subspace as an arm. In this section, we
consider heuristic algorithms as bandit arms to avoid the
limitation of different heuristics (e.g. some heuristics are
only effective to limited set of problems). We developed the
MAB technique based on OpenTuner (Ansel et al., 2014),
which is an extensive, generic auto-tuning framework, and
selected particle swarm optimization (PSO),simulated an-
nealing (SA), differential evolution (DE), Greedy Mutation
and Random Nelder Mead as the bandit arms. All these
heuristics are generic optimization algorithms and can be
performed without much computation overhead.

To avoid being stuck in the local minimal, we introduced
some randomness for decision making process. i.e., there is
small probability that the low-score arms will be selected in
each run. The MAB algorithm will select the most promis-
ing heuristic in each iteration, and allocate computation
resource effectively to strike a good balance between explo-
ration and exploitation.

5 Experiments and Results
The models are evaluated on 500 classes with 5 images each
of MatchedFrequency dataset to speedup compression and
cross validation. The model we use is ResNet50 ?? provided
by PyTorch API (Paszke et al., 2017). Our searching is based
on top-1 accuracy since it is hard to weigh multiple accuracy
goals, and the compression rate is calculated as the ratio of
BMP images to compressed JPEG images.

Sorted random search is the starting point for us to treat
quantization table coefficients as hyper-parameters. Because
bounded random search, Bayesian optimization and MAB
are built on top of boundary information gained from sorted
random search, we discuss them in one subsection. We also
compare the efficiency of different searching technique and
how they generalize to other datasets in terms of both testing
and training.

5.1 Sorted Random Search

Fig. 3 is the result from 4000 sorted random search and
1000 random search, with JPEG quantization table quality
set from 10 to 100 at an interval of 5. Through random
search, we did not find any quantization table that outper-
forms the standard JPEG quantization table. Sorted random
search found pareto points from 1% to 2% given the same
compression rate when the quality factor of standard JPEG
is in the range of [15,90]. The points where quality factor
are 5 and 95 the quantization table coefficients are close to
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Figure 3. Sorted Random Search and Ran-
dom Search Performances Compared to
Standard JPEG

Figure 4. Sorted Random Search Distri-
bution with Compression Rate Range
(22,22.2)

Figure 5. PSNR of Sorted Random Search
with Pareto of Compression Rate and Ac-
curacy Highlighted

Figure 6. Bounded Searching Methods Figure 7. Pareto of Bounded Searching Methods

1 and 255 and therefore provide limited space for optimiza-
tion. Given the same accuracy, sorted random search can
find quantization tables with compression rate 20% to 200%
higher than the standard JPEG depending on the baseline
compression rate.

Fig. 4 shows the distribution of sorted random points with
compression rate between 22 to 22.2. Among 52 points,
there are 48 points perform at least as good as the JPEG
standard quantization table, of which 93.75% perform bet-
ter.Taking into account the strong randomness of sorted
random search, the result indicates JPEG standard quantiza-
tion table is far from optimal for deep neural networks.

To demonstrate the difference between PSNR and deep
neural network optimization goal, we highlight the pareto in
terms of compression rate and accuracy in Fig. 5, showing
the PSNR and compression rate of sorted random search
points. Fig. 5 shows the PSNR of sorted random search
points and we highlight the pareto in terms of compression
rate and accuracy. Though PSNR is closely related to neural
network accuracy, it can not be taken as the sole indicator
of high accuracy.

5.2 Comparison among Bounded Searching Methods

Due to the time constraint of this course project,we have
618 points from bounded random search, 610 points from
Bayesian optimization without local grid search, 416 points
from Bayesian optimization with local grid search and 262
points from MAB. Fig. 6 shows the scatter points of all

bounded searching algorithms. We also plot the points
from sorted random search in the range of (21,23) as base-
line. The experiments indicate that setting bounds for the
searching range can regulate the target compression rate.
Simple technique like bounded random search can give in a
better distribution than sorted random search. It might be-
cause there is no forced structure of bounded random search.
Bayesian optimization with local grid search and MAB are
two methods with highest mean and smallest standard dis-
tribution. Figure 7 shows the pareto points of all methods in
comparison to standard JPEG quantization perform better.
Bayesian optimization and MAB can provide best quanti-
zation tables among all methods. Bayesian optimization
without local grid search does not show a strong advantage
over sorted and bounded random search in terms of finding
pareto optimums mainly because the sampling space is too
large to sample a good point.

5.3 Efficiency Analysis

We also profiled the efficiency of different methods. All
the experiments are built on a 2 thread per core, 8 cores per
socket and 2 sockets Intel(R) Xeon(R) CPU E5-2620 v4
CPU. All reading and writing of data is done on temporary
file storage. We use 20 threads to compress input images.
Table 1 list two factors affecting efficiency: the evaluation
time, which consists of both compression time for dataset
and inference time of neural network, and number of trials
required to generate first 10 good points. Good points are
defined as points with accuracy larger than−0.001 of fitness
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Figure 8. Pareto Performance Validated on
Part of MatchedFrequency in ImageNetV2

Figure 9. Pareto Performance Validated on
Top Images in ImageNetV2

Figure 10. Pareto Performance Validated
on ImageNet Validation Set

Method Decision
Time

Evaluation
Time

# Trials for 10
Good Points

Random Search ≈ 0.7ms ≈ 180s Inf
Sorted Random Search ≈ 1.2ms ≈ 180s 412
Bounded Random Search ≈ 12ms ≈ 180s 617
Bayesian Optimization
w/ Local Grid Search ≈ 60s ≈ 180s 253

MAB ≈ 5ms ≈ 180s 150

Table 1. Efficiency among Algorithms

function f itness(CR). Though the table, we can learn given
the same compression rate as pareto of sorted random search,
the trials the algorithm takes to find 10 points at least bet-
ter than 0.1% of sorted random pareto accuracy. Bounded
random search though has higher average than sorted ran-
dom search, which is efficient in finding points approaching
optimum, because it has structure information. MAB and
Bayesian optimization has similar pareto optimal points but
actually Bayesian has overhead in decision time since we
applied local grid search. MAB also requires fewest trials
to generate good points. An advantage of Bayesian, how-
ever, is it can easily retrieve past data by taking prior, and it
should have increasing learning efficiency in few trials.

5.4 Generalization

In previous sections, we have identified good quantization
table points based on a small portion of MatchedFrequency
dataset of ImageNetV2. It is important to investigate if this
quantization table perform consistent among other datasets.

Fig. 8 shows the performance of pareto points we find on
500 different classes with 5 images each of MatchedFre-
quency dataset from our training dataset. All quantization
tables we take as pareto points outperform standard ones
by 1% to 2% in accuracy when compression rate is the
same. However, sorted random searched curve are not as
smooth as our training curves. For bounded searching meth-

ods, Bayesian optimzation and MAB no longer obviously
outperform sorted random and bounded random search.

Fig. 9 shows the performance of pareto points on the com-
plete TopImage dataset in ImageNetV2. The quantization
tables we find all outperform standard ones, but the margin
compared to the result in Fig. 3 and Fig. 7 is reduced. The
accuracy drops to 0.5% to 1% when compression rate is the
same in which pareto points found by Bayesian optimiza-
tion drops most. This shows though effective, our methods
might be too restricted to training data.

We validate the quantization tables on ImageNet, with ran-
domly chosen 10 images of each classes in the validation
set to test the performance of quantization tables on other
datasets. Fig. 10 shows accuracy gap between our quan-
tization tables and standard ones is as close as 0.1% to
0.3% given the same compression rate. This might because
re-compressing images that are already JPEG-compressed
limits the exploration space for quantization table design,
or the small ImageNetV2 MatchedFrequency dataset fail to
generalize to the ImageNet dataset well.

5.5 Neural Network Retraining

Method Compression
Rate

Top-1
Accuracy

Standard (quality=50) 21.69 0.3784

Sorted Random Search 21.52 0.3890
22.65 0.3843

Bounded Random Search 21.26 0.3776
21.40 0.3887

Bayesian Optimization
w/ Local Grid Search

21.37 0.3866
21.61 0.3808

MAB 21.55 0.3829
21.42 0.3848

Table 2. ImageNet retraining results for different algorithms

In all previous settings, we only train and test our quantiza-
tion table on pretrained neural networks. We also wonder if
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retraining and testing on data compressed by the same quan-
tization table would bring more information to the model
and result in gain in accuracy. We pick the standard JPEG ta-
ble of quality 50, as well as 2 pareto points each from afore-
mentioned methods with closest compression rate to the
standard one. For each of the selected tables, we compress
the dataset with 100 images per classes from ImageNet, and
train ResNet-50 with the following parameters: epochs of
10, batch size of 64, learning rate of 0.0002 for stochastic
gradient descent optimizer.

Table 2 shows that under similar compression rate, most
quantization tables by our algorithm outperform the stan-
dard JPEG table on top-1 accuracy by 0.5% to 1%. This is
a preliminary experiment with small training set and few
epochs, but it indicates a huge potential exploration space
for neural network retraining.

6 Conclusion and Future works
Our research shows the potential in accuracy and compres-
sion rate improvement by redesigning JPEG quantization
table, a topic that lacks attention of researchers in both
JPEG and neural network communities. All our proposed
methods effectively obtain better quantization tables com-
pared to the standard one with an accuracy gain of 1% to
2% when compression rate fixed and a compression rate in-
crease of 20% to 200% given the same accuracy. At training,
MAB stands out with its high efficiency and accuracy. After
cross-validation, all pareto points still outperform standard
ones.But the gap between the standard JPEG and our pro-
posed methods is decreased and no method demonstrated a
dominance in performance advantage. The neural network
retraining result shows the the potential impact of quantiza-
tion table on neural network training and leave the space for
further exploration.
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