

Cornell University

Optimizing JPEG Quantization for Classification Networks

Zhijing Li, Christopher De Sa, Adrian Sampson

Resource-Constrained Machine Learning (ReCoML) at Machine Learning and Systems (MLSys) Mar 4th, 2020

Deep Neural Networks Datasets

• DNN Datasets are	COCO	~25GB	
• large			
• compressed in JPEG !	ImageNet	~150GB	
	Open Image Dataset	~500GB	

Why do we need to redesign JPEG?

- JPEG are so designed to optimize for:
 - minimal distortion PSNR
 - human visual system (HVS)

Why do we need to redesign JPEG?

Original Image **76.2MB**

Compressed Image 1.4 MB

Human Perceived Quality

How does JPEG work?

• Compression

Existing Work

- Q-table optimization targets are different from DNN.
- DeepN-JPEG tunes and tests their Q-table on ImageNet.
 - No cross-validation
 - ImageNet is already compressed!

Construct Datasets

- Why not ImageNet?
 - Already downsized and after lossy compression

- Reconstruct high-resolution dataset
 - ImageNetV2 3 testing datasets with 1000 each
 - Id and url for images on Flickr
 - Simulate the effect of compressing raw pixels

ImageNet	482 x 415
2013 Val	pixels
ImageNetV2	1933 x 1592 pixels

Tuning Methodology

- Inferencing on pretrained ResNet
- Aiming best compression rate and accuracy
- Part of ImageNetV2

- Speedup training
- Reserve for cross validation

Sorted Random Search

- How large is the search space for uniform random search?
 - $255^{64} = 1.04 \times 10^{154}!$
- Borrow the idea from standard JPEG!

More Important

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	55	99	99	99	99	99
47	66	99	9 9	99	99	99	99
99	99	99	99	5 0	99	99	99
99	99	99	99	99	97	99	99
99	99	99	99	99	99	57	99
99	99	99	99	99	99	99	99

High Frequency Small Value

Less Important

Sorted Random Search

- How large is the search space for uniform random search?
 - $255^{64} = 1.04 \times 10^{154}!$
- Borrow the idea from standard JPEG!

Sampling Result

Sampling Result

- Take standard JPEG quality
 - 10, 15, ..., 95

Sampling Result

- Take standard JPEG quality
 - 10, 15, ..., 95

- 0.60 0.55 Accuracy 0.45 0.40 0.40 Uniform Random Search 0.35 -Sorted Random Search Pareto of Sorted Random Search 0.30 Standard 10 20 30 40 **Compression Rate**
- Compression rate 10% 200% better
- Accuracy improvement up to 2%

Can we do better?

Bounded Search

• How large is the search space for uniform random search?

Bounded Search

- Bounded Random Search
 - Uniformly sample in the bound
- Bayesian Optimization w/ local grid search
 - One objective
 - 5 indexes in the area of interest
 - Exhaustively apply the cheap acquisition function
- Composite Heuristic Optimization
 - One objective
 - OpenTuner using multi-armed bandit(MAB) approach
 - Swarm optimization, simulated annealing, differential evolution, greedy mutation and Nelder Mead as bandit arm

Fitness parabola: fitness(*CR*) = $aCR^2 + bCR + c$ Objective = Acc – fitness(*CR*)

Sampling Results

- Accuracy improvement up to 2.5%
- Composite heuristic optimization and Bayesian optimization w/ local grid search outperform others

Cross Validation

- Improvement exists but decreases.
- The complex Bayesian and composite heuristic optimization no longer take the lead.

Significance of Improvement

• Is the improvement significant?

Method	MatchedFrequency	ImageNet
Sorted Random Search	0.91%**	1.16%**
Bounded Random Search	0.72%*	0.66%*
Bayesian Optimization	0.55%*	0.77%*
Composite Heuristic Optimization	0.73%*	1.17%**

* denotes ρ < 10⁻⁵, ** denotes ρ < 10⁻¹¹

• Improvement sometimes is as small as 0.5%, but it is statistically significant.

To Tune JPEG for DNN Vision:

- Use sorted random search.
- It improves accuracy $\sim 1\%$ for the same storage size.
- The improvement remains under cross validation
- Not a fluke the difference is statistically significant.

More to explore:

- DNN applications detection, segmentation, etc.
- Retraining and finetuning preliminary experiments give positive results!
- Quantization bits 8 bits to 3 bits.