
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Predictable Accelerator Design
with Time-Sensitive Affine Types

Rev 5765e1b

Anonymous Author(s)

Abstract
While field-programmable gate arrays (FPGAs) provide an

opportunity to co-design applications with hardware accel-

erators, they remain difficult to program. High-level synthesis
(HLS) tools promise to raise the level of abstraction by com-

piling C or C++ to accelerator designs. Repurposing legacy

software languages, however, requires complex heuristics to

automatically map unrestricted imperative code onto hard-

ware structures. We find that the black-box heuristics in

HLS tools can be unpredictable: changing parameters in the

program that should improve performance can counterintu-

itively yield slower and larger FPGA implementations.

This paper proposes a type system that restricts HLS to

programs that can predictably compile to hardware accel-

erators. The key idea is to model consumable hardware re-

sources with a time-sensitive affine type system that prevents

conflicting simultaneous uses of the same hardware structure.

We implement the type system in Dahlia, a programming

language that compiles to HLS C++, and evaluate how its

type system can reduce the size of HLS parameter spaces

while accepting Pareto-optimal designs.

1 Introduction
While Moore’s lawmay not be dead yet, its stalled returns for

traditional CPUs have sparked renewed interest in special-

ized hardware accelerators [28], for domains from machine

learning [31] to genomics [53]. Reconfigurable hardware—

namely, field-programmable gate arrays (FPGAs)—offer some

of the benefits of specialization without the cost of cus-

tom silicon. FPGAs can accelerate code in domains from

databases [12] to genomics [11] and have driven vast effi-

ciency improvements in Microsoft’s datacenters [43, 20].

However, FPGAs are hard to program. The gold-standard

programmingmodel for FPGAs is register transfer level (RTL)

design in hardware description languages such as Verilog,

VHDL, Bluespec, and Chisel [38, 5]. RTL requires digital

design expertise: akin to assembly languages for CPUs, RTL

is irreplaceable for manual performance tuning, but it is too

explicit and verbose for rapid iteration [50].

FPGA vendors offer high-level synthesis (HLS) or “C-to-
gates” tools [55, 17, 40, 10] that translate annotated subsets of

C and C++ to RTL. Repurposing a legacy software languages,

however, has drawbacks: the resulting language subset is

PLDI’20, June 15–20, 2020, London, United Kingdom
2018.

small and difficult to specify, and minor code edits can cause

large swings in hardware efficiency. We find empirically

that smoothly changing source-level hints can cause wild

variations in accelerator performance. Semantically, there is
no HLS programming language: there is only the subset of C++
that a particular version of a particular compiler supports.

This paper describes a type system that restricts HLS to

programs whose hardware implementation is clear. The goal

is predictable architecture generation: the architectural im-

plications are manifest in the source code, and costly im-

plementation decisions require explicit permission from the

programmer. Instead of silently generating bad hardware

for difficult input programs, the type system yields errors

that help guide the programmer toward a better design. The

result is a language that can express a subset of the archi-

tectures that HLS can. In return, the language makes the

architectural implications manifest in the source code and

lets programmers make trade-offs in a pruned design space.

The central insight is that an affine type system [51] can

model the restrictions of hardware implementation. Com-

ponents in a hardware design are finite and expendable: a

subcircuit or a memory can only do one thing at a time,

so a program needs to avoid conflicting uses of any given

component. Previous research has shown how to apply sub-

structural type systems to model classic computational re-

sources such as memory allocations and file handles [24,

7, 36, 51] and to enforce exclusion for safe shared-memory

parallelism [23, 6, 14]. Unlike those classic resources, how-

ever, the availability of hardware components changes with

time. We extend affine types with time sensitivity using the

insight that repeated uses of the same resources is safe as

long as they are temporally separated, i.e., the circuits using

the resources do not run simultaneously.

We describe Dahlia, a programming language for pre-

dictable accelerator design. Dahlia differs from HLS lan-

guages in two ways: 1) Dahlia makes the hardware imple-

mentation for each language construct manifest in the source

code instead of leaving this decision up to the HLS middle-

end and 2) Dahlia uses its time-sensitive affine types to reason
about the hardware constraints and reject programs when

the program would require complex transformation to be im-

plemented in hardware. We implement a compiler for Dahlia

that emits annotated C++ for a commercial HLS toolchain.

Instead of generating RTL directly, Dahlia adds predictabil-

ity to the existing high-performance optimizations that HLS

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PLDI’20, June 15–20, 2020, London, United Kingdom Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

C/C++
Frontend with
#pragmas

Transformation
Heuristics

RTL Genera‐
tion Backend

Dahlia
Type Checking

Plain C/C++
Toolchain

#pragma In‐
sertion

Erasure

Verilog

Executable

Type Error

Transformation Failure

Traditional HLS Toolchain

This Paper

Figure 1. Overview of a traditional high-level synthesis

toolchain and how Dahlia layers type safety on top.

tools offer. Dahlia makes it easier for programmers to un-

derstand why certain design parameters cause unpredictable

hardware generation through the lens of resource and sched-

uling constraints. We show in this paper that predictability

pitfalls exist in both industrial and recent academic tools,

and Dahlia’s reasoning can help alleviate these issues.

The contributions of this paper are:

• We identify unpredictability pitfalls in HLS and mea-

sure their effects in an industrial tool in Section 2.

• We design Dahlia, a language we describe in Section 3

that restricts HLS to predictable design spaces by mod-

eling the constraints of hardware generation using

time-sensitive affine types.
• We formalize a time-sensitive affine type system and

prove syntactic type soundness in Section 4.

• We empirically demonstrate Dahlia’s effectiveness in

rejecting unpredictable design points and its ability to

make area–performance trade-offs in common accel-

erator designs in Section 5.

2 Predictability Pitfalls in Traditional HLS
Figure 1 depicts the design of a traditional high-level syn-

thesis (HLS) compiler. A typical HLS tool adopts an existing

open-source C/C++ frontend and adds a set of transforma-
tion heuristics that attempt to map software constructs onto

hardware elements along with a backend that generates RTL

code [16, 10]. The transformation step typically relies on

a constraint solver, such as an LP or SAT solver, to satisfy

resource, layout, and timing requirements [25, 18]. Program-

mers can add #pragma hints to guide the transformation—for

example, to duplicate loop bodies or to share functional units.

HLS tools are best-effort compilers: they make a heuris-

tic effort to translate any valid C/C++ program to RTL, re-

gardless of the consequences for the generated accelerator

architecture. Sometimes, the mapping constraints are unsat-

isfiable, so the compiler selectively ignores some #pragma
hints or issues an error. The generated accelerator’s effi-

ciency depends on the interaction between the code, the

hints, and the transformation heuristics that use them.

The standard approach prioritizes automation over pre-

dictability. Small code changes can yield large shifts in the

1 int m1[512][512], m2[512][512], prod[512][512];
2 int sum;
3 for (int i = 0; i < 512; i++) {
4 for (int j = 0; j < 512; j++) {
5 sum = 0;
6 for (int k = 0; k < 512; k++) {
7 sum += m1[i][k] * m2[k][j];
8 }
9 prod[i][j] = sum; } }

Figure 2. Dense matrix multiplication in HLS-friendly C.

generated architecture. When performance is poor, the com-

piler provides little guidance about how to improve it. Prun-

ing such unpredictable points from the design space would let

programmers explore smaller, smoother parameter spaces.

2.1 An Example in HLS
Programming with HLS centers on arrays and loops, which

correspond to memory banks and logic blocks. Figure 2

shows the C code for a matrix multiplication kernel. This

section imagines the journey of a programmer attempting

to use HLS to generate a fast FPGA-based accelerator from

this code. We use Xilinx’s SDAccel compiler (v2018.3.op) and

target UltraScale+ VU9P FGPA on the AWS F1 platform to

perform the experiments mentioned in the section.

Initial accelerator. Our imaginary programmer might first

try compiling the code in Figure 2 verbatim. The HLS tool

maps the arrays m1, m2, and prod onto on-chip memories. FP-

GAs have SRAM arrays, called block RAMs (BRAMs), that the

compiler allocates for this purpose. The loop body becomes

combinational logic consisting of a multiplier, an adder, and

an accumulator register. Figure 3a depicts this configuration.

This design, while functional, does not harness any par-

allelism that an FPGA can offer. The two key metrics for

evaluating an accelerator design are performance and area,

i.e., the amount of physical chip resources that the accelera-

tor occupies. This initial configuration computes the matrix

product in 841.1 ms and occupies 2355 of the device’s lookup

tables (LUTs). However, the target FPGA has over 1 million

LUTs on the device fabric, so the programmer’s next job is

to expend more of the FPGA area to improve performance.

Loop unrolling. The standard tool that HLS offers for ex-

pressing parallelism is an UNROLL annotation, which dupli-

cates the logic for a loop body. A programmer might attempt

to obtain a better accelerator design by adding this annota-

tion in the innermost loop on lines 6–8

#pragma HLS UNROLL FACTOR=8

This unrolling directive instructs the HLS tool to create 8

copies of the multiplier and adder, called processing elements
(PEs), and attempt to run them in parallel. Loop unrolling

represents an area–performance trade-off: programmers can

reasonably expect greater unrolling factors to consume more

of the FPGA chip but yield lower-latency execution.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Predictable Accelerator Design
with Time-Sensitive Affine Types PLDI’20, June 15–20, 2020, London, United Kingdom

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

m1

prod

*

Block RAMs

Combinational Logic

m2
+

sum

Register

(a) The original code.

ꔇ* * **

prod +sum

m1 m2

(b)With unrolling.

ƒ ƒ

ꔇ* * **

m1[0]
m1[1]
m1[2]

m1[7]

prod

m2[0]
m2[1]
m2[2]

m2[7]

+sum

(c) With unrolling and banking.

Figure 3. Three accelerator implementations of the matrix multiplication in Figure 2.

2 4 6 8 10
Unrolling factor (no partitioning)

2300

2400

2500

2600

2700

Lu
t u

se
d

2 4 6 8 10
Unrolling factor (no partitioning)

750

800

850

900

950

1000

Ru
nt

im
e

(m
s)

(a) Unrolling without partitioning

2 4 6 8 10 12 14 16
Unrolling factor (partitioning = 8)

2000

2500

3000

3500

4000

4500

5000

Lu
t u

se
d

Unpredictable points
Predictable points
Incorrect hardware

2 4 6 8 10 12 14 16
Unrolling factor (partitioning = 8)

100

200

300

400

500

600

700

800

Ru
nt

im
e

(m
s)

(b) Unrolling with 8-way partitioning

2 4 6 8 10 12 14 16
Partitioning and Unrolling factor

2250

2500

2750

3000

3250

3500

3750

4000

Lu
t u

se
d

2 4 6 8 10 12 14 16
Partitioning and Unrolling factor

100

200

300

400

500

600

700

800

Ru
nt

im
e

(m
s)

(c) Unrolling and banking in lockstep

Figure 4. Look-up table count (top) and execution latency (bottom) for the kernel in Figure 2 with varying parameters.

The UNROLL directive alone, however, fails to achieve this

effect. Figure 4a shows the effect of various unrolling factors

on this code in area (LUT count) and performance (latency).

There is no clear trend: greater unrolling yields unpredictably

better and worse designs. The problem is that the accelera-

tor’s memories now bottleneck the parallelism provided by

the PEs. The BRAMs in an FPGA have a fixed, small num-

ber of ports, so they can only service one or two reads or

writes at a time. So while the HLS tool obeys the program-

mer’s UNROLL request to duplicate PEs, its scheduling must

serialize their execution. Figure 3b shows how the HLS tool

must insert additional multiplexing hardware to connect the

multipliers to the single-ported memories. The additional

hardware and the lack of parallelism yields the unpredictable

performance and area for different PE counts.

Memory banking tomatch parallelism. To achieve proper
speedups from parallelism, accelerators need to use multi-

ple memories. HLS tools provide annotations to partition
arrays, allocating multiple BRAMs and increasing the access

throughput. The programmer can insert these partitioning

annotations to allocate 8 BRAMs per input memory:

#pragma HLS ARRAY_PARTITION VARIABLE=m1 FACTOR=8

#pragma HLS ARRAY_PARTITION VARIABLE=m2 FACTOR=8

A banked memory consists of several physical memories,

each ofwhich stores a subset of the array’s data. The compiler

partitions the array using a “round-robin” policy to enable

parallel access. In this example, elements 0 and 8 go in bank

0, elements 1 and 9 go in bank 1, etc.

Figure 3c shows the resulting architecture, which requires

no muxing and allows memory parallel access.

Combining banking and unrolling, however, unearths an-

other source of unpredictable performance. While the HLS

tool produces a good result when both the banking factors

and the loop unrolling factor are 8, other design choices

perform worse. Figure 4b shows the effect of varying the un-

rolling factor while keeping the arrays partitioned with fac-

tor 8. Again, the area and performance varies unpredictably

with the unrolling factor. Reducing the unrolling factor from

9 to 8 can counter-intuitively improve both performance and

area. In our experiments, some unrolling factors yield hard-

ware that produces incorrect results. (We show the area but

omit the running time for these configurations.)

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PLDI’20, June 15–20, 2020, London, United Kingdom Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

The problem is that some partitioning/unrolling combina-

tions yield much simpler hardware than others. When both

the unrolling and the banking factors are 8, each parallel PE

need only access a single bank, as in Figure 3c. The first PE

needs to access elements 0, 8, 16, and so on—and because the

array elements are “striped” across the banks, all of these

values live in the first bank. With unrolling factor 9, however,

the first PE needs to access values from every bank, which

requires complicated memory indirection hardware. With

unrolling factor 4, the indirection cost is smaller—the first

PE needs to access only bank 0 and bank 4.

From the programmer’s perspective, the HLS compiler

silently enforces an unwritten rule:When the unrolling factor
divides the banking factor, the area is good and parallelism
predictably improves performance. Otherwise, all bets are off.
Figure 4b labels the points where the unrolling factor divides

the banking factor as predictable points. The HLS compiler

emits no errors or warnings for any parameter setting.

Banking vs. array size. Even if we imagine that a program-

mer carefully ensures that banking factors exactly match

unrolling factors, another pitfall awaits them when choos-

ing the amount of parallelism. Figure 4c shows the effects

of varying the banking and unrolling factor in our kernel

together. The LUT count again varies wildly.

The problem is that, when the banking and unrolling fac-

tors do not evenly divide the sizes of the arrays involved, the

accelerator needs extra hardware to cope with the “leftover”

elements. The memory banks are unevenly sized, and the

PEs need extra hardware to selectively disable themselves on

the final iteration to avoid out-of-bounds memory accesses.

Again, there is a predictable subset of design points when

the programmer obeys the unwritten rule:An array’s banking
factor should divide the array size. Figure 4c highlights the
predictable points that follow this rule. The performance

reliably improves with increasing parallelism and the area

cost scales proportionally.

2.2 Enforcing the Unwritten Rules
The underlying problem in each of these sources of unpre-

dictability is that the traditional design HLS tools prioritizes

automation over programmer control. While automation can

seem convenient, mapping heuristics give rise to implicit

rules that, when violated, silently produce bad hardware

instead of rejecting the program.

This paper instead prioritizes the predictability of hard-

ware generation and making architectural decisions obvi-

ous in the source code. HLS tools already contain such a

predictable and understandable language. By modeling re-

source constraints, we can separate out this well-behaved

subset from the unpredictable parts. Figure 1 shows how our

checker augments a traditional HLS toolchain by lifting hid-

den compiler reasoning into the source code and rejecting

potentially unpredictable programs.

The challenge, however, is that the “unwritten rules” of

HLS are never explicitly encoded anywhere—they arise im-

plicitly from non-local interactions between program struc-

ture, hints, and heuristics. A naïve syntactic enforcement

strategy would be too conservative—it would struggle to

allow flexible, fine-grained sharing of hardware resources.

We design a type system that models the constraints of

hardware implementation to enforce these constraints in a

composable, formal way. Our type system addresses target-
independent issues—it prevents problems that would occur

even on an arbitrarily large FPGA. We do not attempt to

rule out resource exhaustion problems because they would

tie programs to specific target devices. We see that kind of

quantitative resource reasoning as important future work.

3 The Dahlia Language
Dahlia’s type system enforces a safety property: that the

number of simultaneous reads and writes to a given memory

bank may not exceed the number of ports. While traditional

HLS tools enforce this requirement with scheduling heuris-

tics, Dahlia enforces it at the source level using types.

The key ideas in Dahlia are (1) using substructural typing

to reason about consumable hardware resources and (2) ex-

pressing time ordering in the language to reason about when

resources are available. This section describes these two core

features (Sections 3.1 and 3.2) and then shows how Dahlia

builds on them to yield a language that is flexible enough to

express real programs (Sections 3.3–3.6).

3.1 Affine Memory Types
The foundation of Dahlia’s type system is its reasoning about

memories. The problem in Section 2.1’s example is conflict-

ing simultaneous accesses to the design’s memories. The

number of reads and writes supported by a memory per cy-

cle is limited by the number of ports in the memory. HLS

tools automatically detect potential read/write conflicts and

schedule accesses across clock cycles to avoid errors. Dahlia

instead makes this reasoning about conflicts explicit by en-

forcing an affine restriction on memories.

Memories are defined by giving their type and size:

let A: float[10];

The type of A is mem float[10] which is a memory with 10

floating point elements and a single read/write port. Each

Dahlia memory corresponds to an on-chip BRAM in the

FPGA. A memory resembles a C or Java array: programs can

read and mutate its contents by subscripting, as in A[5] :=
4.2. Because they represent static physical resources in the

generated hardware, memory types differ from plain value

types like float by preventing duplication and aliasing:

let x = A[0]; // OK: x is a float.
let B = A; // Error: cannot copy memories.

The affine restriction onmemories disallows reads andwrites

to a memory at the same time:

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Predictable Accelerator Design
with Time-Sensitive Affine Types PLDI’20, June 15–20, 2020, London, United Kingdom

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

let x = A[0]; // OK
A[1] := 1 // Error: Previous read consumed A.

While typechecking A, the Dahlia compiler removes A from

the typing context. Subsequent uses of A are errors, with one

exception: identical reads to the same memory location are

allowed. This program is valid, for example:

let x = A[0];
let y = A[0]; // OK: Reading the same address.

The type system uses access capabilities to check reads and

writes [19, 22]. A read expression such as A[0] acquires a

non-affine read capability for index 0 in the current scope,

which permits unlimited reads to the same location but pre-

vents the acquisition of other capabilities for A. The gener-
ated hardware reads once from A and distributes the result

to both variables x and y, as in this equivalent code:

let tmp = A[0]; let x = tmp; let y = tmp;

However, memory writes use affine write capabilities, which
are use-once resources: multiple simultaneous writes to the

same memory location remain illegal.

3.2 Ordered and Unordered Composition
A key HLS optimization is parallelizing execution of inde-

pendent code. This optimization lets HLS compilers paral-

lelize and reorder dependency-free statements connected by

; when the hardware constraints allow it—critically, when

they do not need to access the same memory banks.

Dahlia makes these parallelism opportunities explicit by

distinguishing between ordered and unordered composition.

The C-style ; connector is unordered: the compiler is free to

reorder and parallelize the statements on either side while

respecting their data dependencies. A second connector, ---,
is ordered: in A --- B, statement A must execute before B.

Dahlia prevents resource conflicts in unordered composi-

tion but allows two statements in ordered composition to use

the same resources. For example, Dahlia accepts this program

that would be illegal when joined by the ; connector:

let x = A[0]

A[1] := 1

In typechecking, ordered composition restores the affine re-

sources that were consumed in the first command before

checking the second command. The capabilities for all mem-

ories are discarded, and the program can acquire fresh capa-

bilities to read and write any memory.

Together, ordered and unordered composition can express

complex concurrent designs:

let A: float[10]; let B: float[10];
{
let x = A[0] + 1

B[1] := A[1] + x // OK

};
let y = B[0]; // Error: B already consumed.

The statements composed with --- are ordered with each

other but unordered with the last line. The read therefore

must not conflict with either of the first two statements.

Logical time. From the programmer’s perspective, a chain

of ordered computations executes over a series of logical
time steps. Logical time in Dahlia does not directly reflect

physical time (i.e., clock cycles). Instead, the HLS backend is

responsible for allocating cycles to logical time steps in a way

that preserves the ordering of memory accesses. For example,

a long logical time step containing an integer division might

require multiple clock cycles to complete, and the compiler

may optimize away unneeded time steps that do not separate

memory accesses. Regardless of optimizations, however, a

well-typed Dahlia program requires at least enough ordered

composition to ensure that memory accesses do not conflict.

Local variables as wires & registers. Local variables, de-
fined using the let construct, do not share the affine restric-

tions of memories. Programs can freely read and write to

local variables without restriction, and unordered composi-

tion respects the dependencies induced by local variables:

let x = 0; x := x + 1; let y = x; // All OK

In hardware, local variables manifest as wires or registers.

The choice depends on the allocation of physical clock cy-

cles: values that persist across clock cycles require registers.

Consider this example consisting of two logical time steps:

let x = A[0] + 1 --- B[0] := A[1] + x

The compiler must implement the two logical time steps in

different clock cycles, so it must use a register to hold x. In
the absence of optimizations, registers appear whenever a

variable’s live range crosses a logical time step boundary.

Therefore, programmers can minimize the use of registers

by reducing the live ranges of variables or by reducing the

amount of sequential composition.

3.3 Memory Banking
As Section 2.1 details, HLS tools can bank memories into

disjoint components to allow parallel access. Dahlia memory

declarations support bank annotations:

let A: float[8 bank 4];

In a memory type mem t[n bank m], the banking factorm
must evenly divide the size n to yield equally-sized banks.

HLS tools, in contrast, allow uneven banking and silently

insert additional hardware to account for it (see Section 2.1).

Affine restrictions for banks. Dahlia tracks an affine re-

source for each memory bank. To physically address a bank,

the syntaxM{b}[i] denotes the ith element ofM ’s bth bank.

This program is legal, for example:

let A: float[10 bank 2];
5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PLDI’20, June 15–20, 2020, London, United Kingdom Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

A{0}[0] := 1;
A{1}[0] := 2; // OK: Accessing a different bank.

To enforce its safety property, Dahlia tracks an affine re-

source for each memory bank. Dahlia also needs to conser-

vatively approximate the banks consumed by every mem-

ory access expression. Dahlia supports logical indexing into

banked arrays using the syntaxM[n] for literals n. For ex-
ample, A[1] is equivalent to A{1}[0] above. Because the

index is static, the type checker can automatically deduce

the bank and offset.

Multi-ported memories. Dahlia also supports reasoning

about multi-ported memories:

let A: float{2}[10];

which declares a memory where every bank gets two two

read/write ports. Dahlia extends its affine reasoning to allow

each bank to provide up to k resources where k is the number

of ports in a memory. This allows multi-ported memories to

provide multiple read/write capabilities in logical timestep.

For example, Dahlia accepts the following program:

let A: float{2}[10];
let x = A[0];
A[1] := x + 1;

Dahlia does not guarantee data-race freedom in presence

of multiported memories. Programs are free to write to and

read from the same memory location in the same logical

timestep and should expect the semantics guranteed by the

underlying memory technology. A more precise type sys-

tem/static analysis can be built on top of Dahlia to provide

data-race freedom.

Multi-dimensional banking. Banking generalizes tomulti-

dimensional arrays. Every dimension can have an indepen-

dent banking factor. This two-dimensional memory has two

banks in each dimension, for a total of 2 × 2 = 4 banks:

let M: float[4 bank 2][4 bank 2];

The physical and logical memory access syntax similarly

generalizes to multiple dimensions. For example, M{3}[0]
represents the element logically located at M[1][1].

3.4 Loops and Unrolling
Fine-grained parallelism is an essential optimization in hard-

ware accelerator design. Accelerator designers duplicate a

block of logic to trade off area for performance: n copies of

the same logic consume n times as much area while offering

a theoretical n-way speedup. Dahlia syntactically separates

out parallelizable doall for loops, which must not have any

cross-iteration dependencies, and sequential while, which
may have dependencies but are not parallelizable. Program-

mers can mark for loops with an unroll factor to duplicate
the loop body logic and run it in parallel:

for (let i = 0..10) unroll 2 { f(i) }

This loop is equivalent to a sequential one that iterates half as

many times and composes two copies of the body in parallel:

for (let i = 0..5) { f((2*i) + 0); f((2*i) + 1) }

The doall restriction is important because it allows the com-

piler to run the two copies of the loop body in parallel using

unordered composition. In traditional HLS tools, a loop un-

rolling annotation such as #pragma HLS unroll is always

allowed—even when the loop body makes parallelization

difficult or impossible. The toolchain will replicate the loop

body and rely on complex analysis and resource scheduling

to optimize the unrolled loop body as well as it can.

Resource conflicts in unrolled loops are errors. For ex-

ample, this unrolled loop is illegal because it accesses an

unbanked array in parallel:

let A: float[10];
for (let i = 0..10) unroll 2 {

A[i] := compute(i) // Error: Insufficient banks.
}

Unrolledmemory accesses. To type checkmemory accesses

within unrolled loops, Dahlia uses special index types for loop
iterators. Index types generalize integers to encode informa-

tion about loop unrolling. In this example:

for (let i = 0..8) unroll 4 { A[i] }

The iterator i gets the type idx{0..4}, indicating that ac-

cessing an array at i will consume banks 0, 1, 2, and 3. Type

checking a memory access with i consumes all banks indi-

cated by its index type.

Unrolling and ordered composition. Loop unrolling has a
subtle interaction with ordered composition. In a loop body

containing ---, like this:

let A: float[10 bank 2];
for (let i = 0..10) unroll 2 {

let x = A[i]

f(x, A[0])

}

A naive interpretation would use parallel composition to join

the loop bodies at the top level:

for (let i = 0..5) {
{ let x0 = A[2*i] --- f(x0, A[0]) };
{ let x1 = A[2*i + 1] --- f(x1, A[0]) } }

However, this interpretation is too restrictive. It requires all
time steps in each loop body to avoid conflicts with all other

time steps. This example would be illegal because the access

to A[i] in the first time step may conflict with the access to

A[0] in the second time step. Instead, Dahlia reasons about

unrolled loops in lockstep by parallelizing within each logical

time step. The loop above is equivalent to:

for (let i = 0..5) {
6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Predictable Accelerator Design
with Time-Sensitive Affine Types PLDI’20, June 15–20, 2020, London, United Kingdom

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

{ let x0 = A[2*i]; let x1 = A[2*i + 1] }

{ f(x0, A[0]); f(x1, A[0]) } }

The lockstep semantics permits this unrolling because con-

flicts need only be avoided between unrolled copies of the

same logical time step. HLS tools must enforce a similar

restriction, but leave the choice to black-box heuristics.

Nested unrolling. In nested loops, unrolled iterators can

separately access dimensions of a multi-dimensional array.

Nested loops also interact with Dahlia’s read and write ca-

pabilities. In this program:

let A: float[8 bank 4][10 bank 5];
for (let i = 0..8) {
for (let j = 0..10) unroll 5 {
let x = A[i][0]

A[i][0] := j; // Error: Insufficient write

capabilities.
} }

The read to array A[i][0] can be proved to be safe because

after desugaring, the reads turn into:

let x0 = A[i][0]; let x1 = A[i][0] ...

This is safe because the first read acquires a read capabil-
ity for indices i and 0 causing the subsequent copies to be
safe. Architecturally, it corresponds to the single read being

franed-out to each parallel PE.

However, the write desugars to:

A[i][0] := j; A[i][0] := j + 1 ...

which causes a write conflict when implementing the hard-

ware.

3.5 Combine Blocks for Reduction
While Dahlia’s for loops prevent cross-iteration dependen-

cies, accelerators often need to reduce the results of parallel

loop iterations. In traditional HLS, loops can freely include

dependent operations, as in this dot product:

for (let i = 0..10) unroll 2 { dot += A[i] * B[i]; }

However, the += update silently introduces a dependency be-
tween every iteration. HLS tools heuristically analyze loops

to extract and serialize dependent portions. In Dahlia, pro-

grammers explicitly distinguish the non-parallelizable re-

duction components of for loops. Each for can have an

optional combine block that contains sequential code to run

after each unrolled iteration group of the main loop body.

For example, this loop is legal and generates the hardware:

for (let i = 0..10)
unroll 2 {
let v = A[i] * B[i];

} combine {
dot += v;

}

PE 0

combine

A{0} B{0} A{1} B{1}

* PE 1 *

dot+

There are two copies of the loop body that run in parallel

and feed into a single reduction tree for the combine block.

The type checker gives special treatment to variables like

v that are defined in for bodies and used in combine blocks.

In the context of the combine block, v is a combine register,
which is a tuple containing all values produced for v in the

unrolled loop bodies. Dahlia defines a class of functions

called reducers that take a combine register and return a

single value (similar to a functional fold). Dahlia defines +=,
-=, *=, /= as built-in reducers with infix syntax.

3.6 Memory Views for Flexible Iteration
To predictably generate hardware for parallel accesses, Dahlia

statically calculates banks accessed by each PE and guar-

antees that they are distinct. Figure 5a shows the kind of

hardware generated by this restriction—each PE is directly

connected to a bank.

To enforce this hardware generation, Dahlia only allows

simple indexing expressions like A[i] and A[4], and rejects

arbitrary index calculations like A[2*i]. General indexing
expressions can require complex indirection hardware to

allow any PE to access any memory bank. An access like

A[i*i], for example, makes it difficult to deduce which bank

it would read on which iteration. For simple expressions

like A[j+8], however, the bank stride pattern is clear. Tradi-

tional HLS tools make a best-effort attempt to deduce access

patterns, but subtle changes in the code can unpredictable

prevent the analysis and generate bad hardware.

Dahlia programmers use memory views to convince the

Dahlia compiler that a parallel access will be predictable.

They key idea is to offer different logical arrangements of

the same underlying physical memory. A view provides a

different memory type for a given input memory to allow a

different pattern of parallel access. Each view comes with a

hardware cost. Dahlia compiles memory views into direct

memory accesses before emitting HLS C++ code.

The rest of this section describes Dahlia’s memory views

and explains the hardware cost for each.

Shrink. To directly connect PEs to memory banks, Dahlia

requires the unrolling factor to match the banking factor. To

allow lower unrolling factors, Dahlia provides shrink views,
which reduce the banking factors of an underlying memory

by an integer factor. For example:

let A: float[8 bank 4];
view sh = shrink A[by 2];
for (let i = 0..8) unroll 2 {

sh[i]; // OK: sh has 2 banks.
}

Dahlia allows sh[i] here because each PE will access a

distinct set of banks. The first PE accesses banks 0 and 2

while the second PE accesses banks 1 and 3. The hardware

cost of a shrink view, as Figure 5b illustrates, is the additional

multiplexing to select the right bank on every iteration.

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’20, June 15–20, 2020, London, United Kingdom Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

PE
0

PE
1

PE
2

PE
3

Bank
0

Bank
1

Bank
2

Bank
3

(a) No view.

PE
0

PE
1

Bank
0

Bank
1

Bank
2

Bank
3

(b) Shrink view.

PE
0

PE
1

PE
2

PE
3

Bank
0

Bank
1

Bank
2

Bank
3

+

+

+

+

(c) Suffix view.

PE
0

PE
1

PE
2

PE
3

Bank
0

Bank
1

Bank
2

Bank
3

(d) Shift view.

PE
0, 0

PE
0, 1

PE
1, 0

PE
1, 1

Bank
0

Bank
1

Bank
2

Bank
3

+

+

+

+

(e) Split view.
Figure 5. Hardware schematics for each kind of memory view. Heavy outlines indicate added hardware cost.

Suffix and prefix. A second kind of view lets programs

create small slices of a larger memory. Dahlia divides the

problem into suffixing (taking the last n elements) and pre-

fixing (taking the first n elements). Dahlia also distinguishes

between suffixes that it can implement efficiently and costlier

ones. An efficient aligned suffix view uses this syntax:

view v = suffix M[by k * e];

where v starts at element k × e of the memory M. Critically,
k must be the banking factor of M. Aligning the suffix to the

banking factor ensures that Dahlia can still directly connect

PEs to banks, as Figure 5c illustrates. This works because

Dahlia statically knows the bank of M for every index in v:
namely, v has the same banking factor as M and the bank for

every element in v is equal to the bank in the underlying

memory. For example, generating suffixes in a loop results in

this pattern, where the digits in each cell are bank numbers

and the heavy outline indicates the view:

let A: float[6 bank 2];
for (let i = 0..4) {
view s = suffix A[by 2 * i];
s[j]; }

Figure 5c shows that the hardware cost of using an aligned

suffix view consists only of an additional hardware cost is an

address adapter that offsets the address into a bank. There is

no additional hardware required to select the right bank.

Prefix views have no hardware cost: they change neither

the index nor the bank number for any access. They statically

restrict accesses by producing a memory with a smaller size.

Shift. Shifted suffixes are like standard suffixes but allow

unrestricted offset expressions. Dahlia disallows parallelizing

the context that creates shift views. This is because proving
that two arbitrary views do not overlap is undecidable in

general. The hardware cost for a shifted view (Figure 5d) is

much higher because the HLS compiler has to assume that

any PE might use any memory bank and generates hardware

to connect every PE to every bank. Even in this worst-case

scenario, Dahlia can reason about the disjointness of bank

accesses for a given suffix. This loop is legal, for example:

let A: float[12 bank 4];
for (let i = 0..3) {
view r = shift A[by i*i];

for (let j = 0..4) unroll 4 {
r[j]; } }

And the access in the loop is equivalent to A[i*i + j].

Split. Some nested iteration patterns can be parallelized at

two levels: globally, over an entire array, and locally, over a

smaller window. This pattern arises in blocked computations,

such as this dot product loop in C++:

float A[8], B[8], sum = 0.0;
for (int i = 0; i < 4; i++) {

for (int j = 0; j < 2; j++) {
int v = A[2*i + j] * B[2*i + j];
sum += v; } }

Both the inner loop and the outer loop represent opportuni-

ties for parallelization. To allow unrolling each loop, Dahlia

requires banking corresponding to the unrolling factor.

To allow unrolling at both the global and local level, Dahlia

has to guarantee that each window is disjoint and each ele-

ment within the window touches distinct elements.

Split views allow exactly for this reasoning. The key idea

is to create a logically more dimensions than the physical

memory and reusing Dahlia’s reasoning for multidimen-

sional memories to prove safety for such accesses. A split
view transforms the one-dimensional memory (left) into a

two-dimensional memory (right).

Each row contains logical chunks for the computation. Using

these split-view declarations:

view split_A = split A[by 2];
view split_B = split B[by 2];

Each view has type mem float[4 bank 2][2 bank 2]. The
above example can now unroll both loops:

for (let i = 0..4) unroll 2 {
for (let j = 0..2) unroll 2 {
let v = split_A[i][j] * split_B[i][j];

} combine {
sum += v; } }

As Figure 5e illustrates, split views have similar cost to

aligned suffix views: they require no bank indirection hard-

ware because the bank index is always known statically. They

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Predictable Accelerator Design
with Time-Sensitive Affine Types PLDI’20, June 15–20, 2020, London, United Kingdom

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

x ∈ variables a ∈ memories

n ∈ numbers b ::= true | false v ::= n | b

e ::= v | bop e1 e2 | x | a[e]

c ::= e | let x = e | c1 c2 | c1 ; c2 | if e c1 c2 |
while e c | x := e | a[e1] := e2 | skip

τ ::= bit⟨n⟩ | float | bool | mem τ [n1 bank n2]

Figure 6. Abstract syntax for the Filament core language.

require an address adapter to compute the address within

the bank from the separate coordinates.

4 Formalism
This section formalizes the time-sensitive affine type system

that underlies Dahlia in a core language, Filament. We give

both a large-step semantics, which is more intelligible, and

a small-step semantics, which enables a soundness proof.

4.1 Syntax
Figure 6 lists the grammar for Filament. Filament statements

c resemble a typical imperative language: there are expres-

sions, variable declarations, conditions, and simple sequen-

tial iteration via while. Filament has ordered composition

c1 c2 and unordered composition c1 ; c2. It separates mem-

ories a and variables x into separate syntactic categories.

Filament programs can only declare the latter: a program

runs with a fixed set of available memories.

4.2 Large-Step Semantics
Filament’s large-step operational semantics is a checked se-
mantics that enforces Dahlia’s safety condition by explicitly

tracking and getting stuck when it would otherwise require

two conflicting accesses. Our type system (Section 4.3) aims

to rule out these conflicts.

The semantics uses an environment σ mapping variable

and memory names to values, which may be primitive values

ormemories, which in turnmap indices to primitive values. A

second context, ρ, is the set of the memories that the program

has accessed. ρ starts empty and accumulates memories as

the program reads and writes them.

The operational semantics consists of an expression judg-

ment σ1, ρ1, e ⇓ σ2, ρ2,v and a command judgment σ1, ρ1, c ⇓
σ2, ρ2. We describe some relevant rules here, and the supple-

mentary material lists the full semantics and proof [2].

Memory accesses. Memories in Filament are mutable stores

of values. Banked memories in Dahlia can be built up using

these simpler memories. The rule for a memory read expres-

sion a[n] requires that a not already be present in ρ, which
would indicate that the memory was previously consumed:

a < ρ1 σ1, ρ1, e ⇓ σ2, ρ2, n σ2 (a) (n) = v

σ1, ρ1, a[e] ⇓ σ2, ρ2 ∪ {a}, v

Composition. Unordered composition accumulates the re-

source demands of two commands by threading ρ through:

σ1, ρ1, c1 ⇓ σ2, ρ2 σ2, ρ2, c2 ⇓ σ3, ρ3
σ1, ρ1, c1 ; c2 ⇓ σ3, ρ3

If both commands read or write the same memory, they will

conflict in ρ. Ordered composition runs each command in

the same initial ρ environment and merges the resulting ρ:

σ1, ρ1, c1 ⇓ σ2, ρ2 σ2, ρ1, c2 ⇓ σ3, ρ3
σ1, ρ1, c1 c2 ⇓ σ3, ρ2 ∪ ρ3

4.3 Type System
The typing judgments have the form Γ1,∆1 ⊢ c ⊣ Γ2,∆2 and

Γ,∆1 ⊢ e : τ ⊣ ∆2. Γ is a standard typing context for variables
and ∆ is the affine context for memories.

Affine memory accesses. Memories are affine resources.

The rules for reads and writes check the type of the index in

Γ and remove the memory from ∆:

Γ,∆1 ⊢ e1 : bit⟨n⟩ ⊣ ∆2 ∆2 = ∆3 ∪ {a 7→ memτ [n1]}

Γ,∆1 ⊢ a[e] : τ ⊣ ∆3

Composition. The unordered composition rule checks the

first statement in the initial contexts and uses the resulting

contexts to check the second statement:

Γ1,∆1 ⊢ c1 ⊣ Γ2,∆2 Γ2,∆2 ⊢ c2 ⊣ Γ3,∆3

Γ1,∆1 ⊢ c1 ; c2 ⊣ Γ3,∆3

Ordered composition checks both commands with the

same resources:

Γ1,∆1 ⊢ c1 ⊣ Γ2,∆2 Γ2,∆1 ⊢ c2 ⊣ Γ3,∆3

Γ1,∆1 ⊢ c1 c2 ⊣ Γ3,∆2 ∩ ∆3

The rulemerges the resulting∆ contexts with set intersection

to yield the resources not consumed by either statement.

4.4 Small-Step Semantics
We also define a small-step operational semantics for Fila-

ment upon which we build a proof of soundness. The seman-

tics uses the same environment σ and memory context ρ as

the big-step semantics.

The semantics consists of judgments σ1, ρ1, e → σ2, ρ2, e′

and σ1, ρ1, c → σ2, ρ2, c′. We state that the small-step seman-

tics is equivalent to the big-step semantics, though several

big-step judgments are represented by multiple small-step

judgments each. Additionally, modeling sequential composi-

tion c1 c2 necessitates an intermediate command form

c1
ρ
∼ c2 to correctly thread ρ to c1 and c2.

4.5 Soundness Theorem
We state a soundness theorem for Filament’s type system

with respect to its checked small-step operational semantics.

Theorem. If ∅,∆∗ ⊢ c ⊣ Γ2,∆2, then ∅, ∅, c
∗
→ σ , ρ, skip.

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PLDI’20, June 15–20, 2020, London, United Kingdom Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

where ∆∗ is the initial affine context of memories available to

a program. The theorem implies that the type system rules

out stuckness due to memory conflicts in ρ. We prove this

using progress and preservation lemmas:

Lemma 1 (Progress). If Γ,∆ ⊢ c ⊣ Γ2,∆2 and Γ,∆ ∼ σ , ρ,
then σ , ρ, c → σ ′, ρ ′, c ′ or c = skip.

Lemma 2 (Preservation). If Γ,∆ ⊢ c ⊣ Γ2,∆2 and Γ,∆ ∼ σ , ρ,
and σ , ρ, c → σ ′, ρ ′, c ′, then Γ′,∆′ ⊢ c ′ ⊣ Γ′

2
,∆′

2
and Γ′,∆′ ∼

σ ′, ρ ′.

In these lemmas, Γ,∆ ∼ σ , ρ is a well-formedness judgment

stating that all variables in Γ are in σ and all memories in

∆ are not in ρ. We prove the lemmas by induction on the

small-step relation in the supplementary material.

5 Evaluation
Our evaluation measures whether Dahlia’s restrictions can

improve predictability without sacrificing too much sheer

performance. We conduct two experiments: (1) We perform

an exhaustive design space exploration for one kernel to

determine how well the restricted design points compare to

the much larger unrestricted parameter space. (2) We port

the MachSuite benchmarks [46] and, where Dahlia yields a

meaningful design space, perform a parameter sweep.

5.1 Implementation and Experimental Setup
We implemented a Dahlia compiler in 5200 LoC of Scala. The

compiler checks Dahlia programs and generates C++ code us-

ing Xilinx Vivado HLS’s #pragma directives [55]. We execute

benchmarks on AWS F1 instances [1] with 8 vCPUs, 122 GB

of main memory, and a Xilinx UltraScale+ VU9P. We use the

SDAccel development environment [54] and synthesize the

benchmarks with a target clock period of 250 MHz.

5.2 Case Study: Unrestricted DSE vs. Dahlia
In this section, we conduct an exhaustive design-space explo-

ration (DSE) of a single benchmark as a case study. Without

Dahlia, the HLS design space is extremely large—we study

how the smaller Dahlia-restricted design space compares.

We select a blocked matrix multiplication kernel (gemm-
blocked from MachSuite) for its large but tractable design

space. The kernel has 3 two-dimensional arrays (two operands

and the output product) and 5 nested loops, of which the

inner 3 are parallelizable. We define parameters for the 6

banking factors (two dimensions for each memory) and 3

unrolling factors. (A full code listing appears in the sup-

plementary material [2].) We explore a design space with

banking factors of 1–4 and unrolling factors of 1, 2, 4, 6, and 8.

This design space consists of 32,000 distinct configurations.

We exhaustively evaluated the entire design space using

Vivado HLS’s estimation mode, which required a total of

2,666 compute hours. We identify Pareto-optimal configura-

tions according to their estimated cycle latency and number

of lookup tables (LUTs), flip flops (FFs), block RAMs (BRAMs),

and arithmetic units (DSPs).

Dahlia accepts 354 configurations, or about 1.1% of the

unrestricted design space. The smaller space is only useful

if it includes useful design points—a broad range of Pareto-

optimal configurations. Figures 7a and 7c show the Pareto-

optimal points and the subset that Dahlia accepts, respec-

tively. (Pareto optimality is determined using all objectives,

but the plot shows only two: LUTs and latency.) The Dahlia-

accepted points lie primarily on the Pareto frontier. The

optimal points that Dahlia rejects expend a large number of

LUTs to reduce BRAM consumption.

5.3 Dahlia-Directed DSE & Programmability
We port benchmarks from an HLS benchmark suite, Mach-

Suite [46], to study Dahlia’s flexibility. Of the 19 MachSuite

benchmarks, one contains a correctness bug and two fail to

synthesize correctly in Vivado, indicating a bug in the tools.

We successfully ported all 16 of the remaining benchmarks.

From these, we select 3 benchmarks that exhibit the kind

of fine-grained, loop-level parallelism that Dahlia targets

as case studies: sencil2d, md-knn, and md-grid. As the pre-
vious section illustrates, an unrestricted DSE is intractable

for even modestly sized benchmarks, so we instead mea-

sure the breadth and performance of the much smaller space

of configurations that Dahlia accepts. For each benchmark,

we find all optimization parameters available in the Dahlia

port and define a search space for each. The Dahlia type

checker rejects some design points, and we measure the re-

maining space. We use Vivado HLS’s estimation mode to

measure the resource counts and estimated latency for each

accepted point. Figure 8 depicts the Pareto-optimal points in

each space. In each plot, we also highlight the effect a single

parameter has on the results.

The rest of this section reports quantitatively on each

benchmark’s design space and reports qualitatively on the

programming experience during the port from C to Dahlia.

stencil2d. MachSuite’s stencil2d is a filter operation with

four nested loops. The outer loops scan over the input matrix

and the inner loops apply a 3×3 filter. Our Dahlia port unrolls

the inner two loops and banks both input memories. We use

unrolling factors from 1 to 3 and bank each dimension of the

input array by factors 1 to 6. The resulting design space has

2,916 points. Dahlia accepts 18 of these points (0.6%).

Section 5.3 shows the Pareto-optimal Dahlia-accepted

points. The figure uses color to show the unrolling factor for

the innermost loop. This unrolling factor has a large effect

on the design’s performance, while banking factors and the

other loop explain the rest of the variation.

The original C code uses single-dimensional arrays and

uses index arithmetic to treat them as matrices:

for (r=0; r<row_size-2; r++) {
for (c=0; c<col_size-2; c++) {

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Predictable Accelerator Design
with Time-Sensitive Affine Types PLDI’20, June 15–20, 2020, London, United Kingdom

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

0 5 10 15 20 25 30
Estimated latency (millions of cycles)

0

20,000

40,000

60,000

80,000

Es
tim

at
e

LU
Ts

All
Pareto

(a) Pareto optimal points

0 5 10 15 20 25 30
Estimated latency (millions of cycles)

0

20,000

40,000

60,000

80,000

Es
tim

at
e

LU
Ts

All
Dahlia

(b) Points accepted by Dahlia

0 5 10 15 20 25 30
Estimated latency (millions of cycles)

0

20,000

40,000

60,000

80,000

Es
tim

at
e

LU
Ts

All
Pareto
Pareto points accepted by Dahlia

(c) Pareto points accepted by Dahlia

Figure 7. Results from exhaustive design space exploration for gemm-blocked.

500 1,000 1,500 2,000 2,500 3,000
Estimated latency (hundreds of cycles)

2,500

3,000

3,500

4,000

4,500

5,000

5,500

Es
tim

at
e

LU
Ts

stencil2d
inner unroll

1
3

162 165 167 170 172 175 177 180
Estimated latency (hundreds of cycles)

100,000

200,000

300,000

400,000

500,000

Es
tim

at
e

LU
Ts

md-knn
outer unroll

1
2
4
8

79.6 79.8 80.0 80.2 80.4
Estimated latency (hundreds of cycles)

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Es
tim

at
e

LU
Ts

md grid
middle unroll

1
2

Figure 8. The design spaces for three MachSuite benchmarks. Each uses a color to highlight one design parameter.

for (k1=0; k1<3; k1++) {
for (k2=0; k2<3; k2++) {
mul = filter[k1*3 + k2] *

orig[(r+k1)*col_size + c+k2];

In the Dahlia port, we must use proper two-dimensional ar-

rays because the compiler rejects arbitrary indexing expres-

sions. Using views, programmers can decouple the storage

format from the iteration pattern. To express the accesses

to the input matrix orig, we create a shifted suffix view

(Section 3.6) for the current window:

for (let r = 0..126) {
for (let c = 0..62) {
view window = shift orig[by r][by c];
for (let k1 = 0..3) unroll 3 {

for (let k2 = 0..3) unroll 3 {
let mul = filter[k1][k2] * window[k1][k2];

The viewmakes the code’s logicmore obviouswhile allowing

the Dahlia type checker to allow unrolling on the inner two

loops. It also clarifies why parallelizing the outer loops would

be undesirable: the parallel views would require overlapping

regions of the input array, introducing a bank conflict.

md-knn. The md-knn benchmark implements an n-body
molecular dynamics simulation with a k-nearest neighbors
kernel. The MachSuite implementation uses data-dependent

loads in its main loop, which naïvely seems to prevent paral-

lelization. In our Dahlia port, however, we hoist this serial

section into a separate loop that runs before the main, par-

allelizable computation. Dahlia’s type system helped guide

the programmer toward a version of the benchmark where

the benefits from parallelization are clear.

For each of the program’s four memories, we used banking

factors from 1 to 4. We unrolled each of the two nested loops

with factors from 1 to 8. The full space has 16,384 points, of

which Dahlia accepts 525 (3%).

Section 5.3 shows the latency of the Pareto-optimal de-

signs. The visualization omits a tight cluster of 189 outlier

points (36% of the Pareto-optimal configurations) with much

higher latency (∼130, 000 cycles), and marginally better re-

source usage, to make it easier to see the trend. The color

shows the unrolling factor of the outer loop. In this kernel,

the dominant effect is the memory banking (not shown in the

figure), which determines which cluster the results fall into.

The unrolling factor is a second-order effect that expends

LUTs to achieve a small increase in performance. [Maybe xxx
we can write one sentence to theorize about why. —a]

md-grid. Another algorithm for the same molecular dynam-

ics problem, md-grid, uses a different strategy based on a

3D grid implemented with several 4-dimensional arrays. It

calculates forces between neighboring grid cells. Of its 6

nested loops, the outer three are parallelizable. We use bank-

ing factors of 1 to 4 for each dimension of each array, and

we try unrolling factors from 1 to 8 for both loops. The full

space has 21,952 points, of which Dahlia accepts 81 (0.4%).

Section 5.3 again shows the Pareto-optimal design points.

The innermost loop unrolling factor (not shown in the figure)

determines which of three coarse regimes the design falls

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PLDI’20, June 15–20, 2020, London, United Kingdom Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

2 4 6 8 10 12 14 16
Unrolling factor

25000

30000

35000

40000

45000

Lu
t u

se
d

Unpredictable points
Predictable points

(a) Absolute LUT counts.

2 4 6 8 10 12 14 16
Unrolling Factor

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
Re

so
ur

ce
 U

sa
ge

s

DSP used
BRAM used
LUT used

(b) Normalized to no unrolling.

Figure 9. Resource utilization for gemm-ncubed in Spatial.

into. The color shows the second loop unrolling factor, which

determines a second-order area–latency trade-off within

each regime. In both cases, unrolling has a predictable effect

on the quality of the design: more unrolling attains better

performance at the cost of area.

[Is there anything interesting qualitative to say aboutxxx
md-grid? —a]

6 Related Work
Dahlia builds on a long history of work on safe systems pro-

gramming. Substructural type systems are known to be a

good fit for controlling system resources [7, 24, 51, 14, 36].

Dahlia’s enforcement of exclusive memory access resembles

work on race-free parallel programming using type and ef-

fect systems [8] or concurrent separation logic [39]. Safe

parallelism on CPUs focuses on data races where concurrent

reads and writes to a memory are unsynchronized. Conflicts

in Dahlia are different: any simultaneous pair of accesses to

the same bank is illegal. The distinction influences Dahlia’s

capability system and its memory views, which cope with

the arrangement of arrays into parallel memory banks.

Dahlia takes inspiration from other approaches to improv-

ing the accelerator design process, including HDLs, HLS,

DSLs, and other recent accelerator design languages.

Spatial. Spatial [32] is a language for designing accelera-

tors that builds on parallel patterns [41], which are flexible

hardware templates. Spatial adds some automation beyond

traditional HLS: it infers a banking strategy given some par-

allel accesses. Like HLS, Spatial designs can be unpredictable.

Figure 9 shows resource usage for the matrix multiplication

kernel from Section 2 written in Spatial. (A full experimental

setup appears in the supplementary material [2].) For un-

rolling factors that do not evenly divide the memory size,

Spatial will sometimes infer a banking factor that is not

equal to the unrolling factor. In these cases, the resource

usage abruptly increases. A type system like Dahlia could

help address these predictability pitfalls in Spatial.

BetterHDLs. Modern hardware description languages [5, 35,

15, 4, 52, 30, 38] aim to address the shortcomings of Verilog

and VHDL. These languages target register transfer level

(RTL) design. Dahlia targets a different level of abstraction

and a different use case: it uses an imperative programming

model and focuses exclusively on computational accelerators.

Dahlia is not a good language for implementing a CPU, for

example. Its focus on acceleration requires the language and

semantics to more closely resemble software languages.

Traditional HLS. Existing commercial [55, 29, 37, 9] and

academic [44, 10, 40, 56] high-level synthesis (HLS) tools com-

pile subsets of C, C++, OpenCL, or SystemC to RTL. While

their powerful heuristics can be effective, when they fail, pro-

grammers have little insight into what went wrong or how

to fix it [34]. Dahlia represents an alternative approach that

prioritizes programmer control over black-box optimization.

Targeting hardware from DSLs. Compilers to FPGAs and

ASICs exist for DSLs for image processing [26, 27, 42, 48] and

machine learning [21, 49]. Dahlia is not a DSL: it is a general

language for implementing accelerators. While DSLs offer

advantages in productivity and compilation for individual

application domains, they do not obviate the need for general

languages to fill in the gaps between popular domains, to

offer greater programmer control when appropriate, and to

serve as a compilation target for multiple DSLs.

Accelerator design languages. Some recent languages also

target general accelerator design. HeteroCL [33] uses aHalide-

like [45] scheduling language to describe how to map algo-

rithms onto HLS-like hardware optimizations, and T2S [47]

similarly lets programs describe how generate a spatial imple-

mentation. Lime [3] extends Java to express target-independent

streaming accelerators. CoRAM [13] is not a just a language;

it extends FPGAs with a programmable memory interface

that adapts memory accesses, akin to Dahlia’s memory views.

Dahlia’s focus on predictability and type-driven designmakes

it unique, as far as we are aware.

7 Conclusion
Dahlia exposes predictability as a new design goal for HLS

tools. Predictability comes at a cost—it can rule out design

points that perform surprisingly well because of a subtle

convergence of heuristics. We see these outliers as a worthy

sacrifice in exchange for an intelligible programming model.

Future work should extend Dahlia with parametric poly-

morphism to express interdependencies between parameters.

While Dahlia’s design spaces are already smaller than in un-

restricted HLS, polymorphism could help scale DSE to large

designs comprising many interconnected subcomponents.

References
[1] AmazonWeb Services. Amazon EC2 F1 Instances. https://aws.amazon.

com/ec2/instance-types/f1/.
[2] Anonymous for double blind review. Predictable Accelerator Design

with Time-Sensitive Affine Types: Supplemental Material.

[3] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah.

2010. Lime: A Java-compatible and Synthesizable Language for Hetero-

geneous Architectures. InACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA).

[4] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards. 2010.

CλaSH: Structural Descriptions of Synchronous Hardware Using

12

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Predictable Accelerator Design
with Time-Sensitive Affine Types PLDI’20, June 15–20, 2020, London, United Kingdom

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

Haskell. In Euromicro Conference on Digital System Design: Architec-
tures, Methods and Tools.

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew

Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.

2012. Chisel: constructing hardware in a Scala embedded language. In

Design Automation Conference (DAC).
[6] Henry G. Baker. 1995. “Use-once” Variables and Linear Objects: Storage

Management, Reflection and Multi-threading. SIGPLAN Notices 30, 1
(Jan. 1995), 45–52.

[7] J Bernardy, Mathieu Boespflug, Ryan Newton, Simon L. Peyton Jones,

and Arnaud Spiwack. 2017. Linear Haskell: practical linearity in a

higher-order polymorphic language. In ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL).

[8] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve,

Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-

mons, Hyojin Sung, and Mohsen Vakilian. 2009. A Type and Effect

System for Deterministic Parallel Java. In ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages and Applications
(OOPSLA).

[9] Cadence. Stratus High-Level Synthesis. https://www.cadence.com/
content/cadence-www/global/en_US/home/tools/digital-design-
and-signoff/synthesis/stratus-high-level-synthesis.html.

[10] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed

Kammoona, Jason H Anderson, Stephen Brown, and Tomasz Cza-

jkowski. 2011. LegUp: high-level synthesis for FPGA-based pro-

cessor/accelerator systems. In International Symposium on Field-
Programmable Gate Arrays (FPGA).

[11] Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and PengWei. 2016.

When Apache Spark meets FPGAs: a case study for next-generation

DNA sequencing acceleration. In IEEE International Conference on
Cloud Computing (CloudCom).

[12] Eric S. Chung, John D. Davis, and Jaewon Lee. 2013. LINQits: big data

on little clients. In International Symposium on Computer Architecture
(ISCA).

[13] Eric S Chung, James C Hoe, and Ken Mai. 2011. CoRAM: an in-

fabric memory architecture for FPGA-based computing. In Field pro-
grammable gate arrays (FPGA).

[14] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy

McNeil. 2015. Deny Capabilities for Safe, Fast Actors. In International
Workshop on Programming Based on Actors, Agents, and Decentralized
Control (AGERE!).

[15] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sher-

wood. 2017. A Pythonic approach for rapid hardware prototyping and

instrumentation. In International Conference on Field-Programmable
Logic and Applications (FPL).

[16] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. 2006. Platform-

Based Behavior-Level and System-Level Synthesis. In International
SoC Conference.

[17] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.

2011. High-Level Synthesis for FPGAs: From Prototyping to Deploy-

ment. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD) 30, 4 (April 2011), 473–491.

[18] J. Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling

algorithm based on SDC formulation. In Design Automation Conference
(DAC).

[19] Matthew Fluet, Greg Morrisett, and Amal Ahmed. 2006. Linear regions

are all you need. In European Symposium on Programming (ESOP).
[20] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-

sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,

Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam

Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven K. Reinhardt,

Adrian M. Caulfield, Eric S. Chung, and Doug Burger. 2018. A Config-

urable Cloud-scale DNN Processor for Real-time AI. In International
Symposium on Computer Architecture (ISCA).

[21] N. George, H. Lee, D. Novo, T. Rompf, K. J. Brown, A. K. Sujeeth, M.

Odersky, K. Olukotun, and P. Ienne. 2014. Hardware system synthesis

from Domain-Specific Languages. In International Conference on Field-
Programmable Logic and Applications (FPL).

[22] Colin S Gordon, Michael D Ernst, and Dan Grossman. 2013. Rely-

guarantee references for refinement types over aliased mutable data.

In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

[23] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Brom-

field, and Joe Duffy. 2012. Uniqueness and Reference Immutability

for Safe Parallelism. In ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA).

[24] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling

Wang, and James Cheney. 2002. Region-based Memory Management

in Cyclone. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

[25] S Gupta, Renu Gupta, Nikil Dutt, and Alex Nicolau. 2004. SPARK: A
Parallelizing Approach to the High-Level Synthesis of Digital Circuits.
Springer.

[26] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-

Kelley, Noy Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and

Pat Hanrahan. 2014. Darkroom: compiling high-level image processing

code into hardware pipelines. ACM Transactions on Graphics 33, 4
(2014).

[27] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley,

Mark Horowitz, and Pat Hanrahan. 2016. Rigel: Flexible multi-rate

image processing hardware. ACM Transactions on Graphics 35, 4
(2016).

[28] John L. Hennessy and David A. Patterson. 2019. A New Golden Age

for Computer Architecture. Communications of the ACM (CACM) 62,
2 (Jan. 2019), 48–60.

[29] Intel. Intel High Level Synthesis Compiler. https:
//www.altera.com/products/design-software/high-level-design/
intel-hls-compiler/overview.html

[30] Jane Street. HardCaml: Register Transfer Level Hardware Design in

OCaml. https://github.com/janestreet/hardcaml.
[31] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-

den, Al Borchers, Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris

Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,

Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,

Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-

der Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy,

James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,

Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire

Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray

Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,

Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,

Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan

Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Ho-

ria Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,

Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance

Analysis of a Tensor Processing Unit. In International Symposium on
Computer Architecture (ISCA).

[32] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,

Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,

Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: a language and

compiler for application accelerators. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

[33] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, JieWang, CodyHao Yu, Yuan Zhou,

Jason Cong, and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Pro-

gramming Infrastructure for Software-Defined Reconfigurable Com-

puting. In International Symposium on Field-Programmable Gate Arrays

13

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://github.com/janestreet/hardcaml

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

PLDI’20, June 15–20, 2020, London, United Kingdom Anon.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

(FPGA).
[34] Yun Liang, Kyle Rupnow, Yinan Li, Dongbo Min, Minh N Do, and Dem-

ing Chen. 2012. High-level synthesis: productivity, performance, and

software constraints. Journal of Electrical and Computer Engineering
(2012).

[35] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL:

A Unified Framework for Vertically Integrated Computer Architecture

Research. In IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[36] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language.

In High Integrity Language Technology (HILT).
[37] Mentor Graphics. Catapult High-Level Synthesis. https://www.mentor.

com/hls-lp/catapult-high-level-synthesis/.
[38] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL

from high level specifications. In Conference on Formal Methods and
Models for Co-Design (MEMOCODE).

[39] Peter W. O’Hearn. 2007. Resources, Concurrency, and Local Reasoning.

Theoretical Computer Science 375 (April 2007), 271–307.
[40] Christian Pilato and Fabrizio Ferrandi. 2013. Bambu: A modular frame-

work for the high level synthesis of memory-intensive applications. In

International Conference on Field-Programmable Logic and Applications
(FPL).

[41] Raghu Prabhakar, David Koeplinger, Kevin J Brown, HyoukJoong Lee,

Christopher De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016. Gen-

erating configurable hardware from parallel patterns. ACM SIGARCH
Computer Architecture News 44, 2 (2016), 651–665.

[42] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson,

Jonathan Ragan-Kelley, and Mark Horowitz. 2017. Programming het-

erogeneous systems from an image processing DSL. ACM Transactions
on Architecture and Code Optimization (TACO) (2017).

[43] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,

Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-

ers, Gopi Prashanth, Gopal Jan, Gray Michael, Haselman Scott Hauck,

Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James

Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Y.

Xiao, and Doug Burger. 2014. A Reconfigurable Fabric for Accelerat-

ing Large-scale Datacenter Services. In International Symposium on
Computer Architecture (ISCA).

[44] Andrew R Putnam, Dave Bennett, Eric Dellinger, Jeff Mason, and

Prasanna Sundararajan. 2008. CHiMPS: A high-level compilation flow

for hybrid CPU-FPGA architectures. In International Symposium on
Field-Programmable Gate Arrays (FPGA).

[45] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a

language and compiler for optimizing parallelism, locality, and recom-

putation in image processing pipelines. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).

[46] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and

David Brooks. 2014. MachSuite: Benchmarks for Accelerator Design

and Customized Architectures. In IEEE International Symposium on
Workload Characterization (IISWC).

[47] Hongbo Rong. Programmatic Control of a Compiler for Generating

High-performance Spatial Hardware. arXiv preprint 1711.07606. https:
//arxiv.org/abs/1711.07606.

[48] Jeff Setter. Halide-to-Hardware. https://github.com/jeffsetter/Halide-
to-Hardware.

[49] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,

Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.

2016. From high-level deep neural models to FPGAs. In IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[50] Stuart Sutherland, Don Mills, and Chris Spear. 2007. Gotcha Again:

More Subtleties in the Verilog and SystemVerilog Standards That Ev-

ery Engineer Should Know. In Synopsys Users Group (SNUG) San
Jose. https://lcdm-eng.com/papers/snug07_Verilog%20Gotchas%

20Part2.pdf
[51] Jesse A. Tov and Riccardo Pucella. 2011. Practical Affine Types. InACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL).

[52] Lenny Truong and Pat Hanrahan. A Golden Age of Hardware De-

scription Languages: Applying Programming Language Techniques to

Improve Design Productivity.

[53] Yatish Turakhia, Gill Bejerano, and William J. Dally. 2018. Darwin:

A Genomics Co-processor Provides Up to 15,000X Acceleration on

Long Read Assembly. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[54] Xilinx Inc. SDAccel: Enabling Hardware-Accelerated Software. https://
www.xilinx.com/products/design-tools/software-zone/sdaccel.html.

[55] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis.

UG902 (v2017.2) June 7, 2017. https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-
synthesis.pdf.

[56] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and

Jason Cong. 2008. AutoPilot: A platform-based ESL synthesis system.

In High-Level Synthesis. 99–112.

14

https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://arxiv.org/abs/1711.07606
https://arxiv.org/abs/1711.07606
https://github.com/jeffsetter/Halide-to-Hardware
https://github.com/jeffsetter/Halide-to-Hardware
https://lcdm-eng.com/papers/snug07_Verilog%20Gotchas%20Part2.pdf
https://lcdm-eng.com/papers/snug07_Verilog%20Gotchas%20Part2.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf

	Abstract
	1 Introduction
	2 Predictability Pitfalls in Traditional HLS
	2.1 An Example in HLS
	2.2 Enforcing the Unwritten Rules

	3 The Dahlia Language
	3.1 Affine Memory Types
	3.2 Ordered and Unordered Composition
	3.3 Memory Banking
	3.4 Loops and Unrolling
	3.5 Combine Blocks for Reduction
	3.6 Memory Views for Flexible Iteration

	4 Formalism
	4.1 Syntax
	4.2 Large-Step Semantics
	4.3 Type System
	4.4 Small-Step Semantics
	4.5 Soundness Theorem

	5 Evaluation
	5.1 Implementation and Experimental Setup
	5.2 Case Study: Unrestricted DSE vs. Dahlia
	5.3 Dahlia-Directed DSE & Programmability

	6 Related Work
	7 Conclusion
	References

